这题要求n的阶乘的位数,如果n较大时,n的阶乘必将是一个
很大的数,题中说1<=n<10000000,当n=10000000时可以说n的阶乘将是一个非常巨大的数字,对于处理大数的问题,我们一般用字符串,这题当n取最大值时,就是一千万个数字相乘的积,太大了,就算保存在字符串中都有一点困难,而且一千万个数字相乘是会涉及到大数的乘法,大数的乘法是比较耗时的,就算计算出结果一般也会超时。这让我们不得不抛弃这种直接的方法。再想一下,这题是要求n的阶乘的位数,而n的阶乘是n个数的乘积,那么要是我们能把这个问题分解就好了。在这之前,我们必须要知道一个知识,任意一个正整数a的位数等于(int)log10(a) + 1;为什么呢?下面给大家推导一下: 对于任意一个给定的正整数a, 假设10^(x-1)<=a<10^x,那么显然a的位数为x位, 又因为 log10(10^(x-1))<=log10(a)<(log10(10^x)) 即x-1<=log10(a)<x 则(int)log10(a)=x-1, 即(int)log10(a)+1=x 即a的位数是(int)log10(a)+1我们知道了一个正整数a的位数等于(int)log10(a) + 1,现在来求n的阶乘的位数:假设A=n!=1*2*3*......*n,那么我们要求的就是(int)log10(A)+1,而: log10(A) =log10(1*2*3*......n) (根据log10(a*b) = log10(a) + log10(b)有) =log10(1)+log10(2)+log10(3)+......+log10(n)现在我们终于找到方法,问题解决了,我们将求n的阶乘的位数分解成了求n个数对10取对数的和,并且对于其中任意一个数,都在正常的数字范围之类。总结一下:n的阶乘的位数等于 (int)(log10(1)+log10(2)+log10(3)+......+log10(n)) + 1
1 #include2 #include 3 using namespace std; 4 int main() 5 { 6 int n,t;cin >> t; 7 while(t--){ 8 cin >> n; 9 double ans=0;10 for(int i=1;i<=n;++i)11 ans+=log10(i);12 cout << int(ans)+1 << endl;13 }14 }