博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HDU 1018 Big Number
阅读量:5072 次
发布时间:2019-06-12

本文共 1199 字,大约阅读时间需要 3 分钟。

这题要求n的阶乘的位数,如果n较大时,n的阶乘必将是一个

很大的数,题中说1<=n<10000000,当n=10000000时可以说n
的阶乘将是一个非常巨大的数字,对于处理大数的问题,我
们一般用字符串,这题当n取最大值时,就是一千万个数字相
乘的积,太大了,就算保存在字符串中都有一点困难,而且
一千万个数字相乘是会涉及到大数的乘法,大数的乘法是比较
耗时的,就算计算出结果一般也会超时。这让我们不得不抛弃
这种直接的方法。
再想一下,这题是要求n的阶乘的位数,而n的阶乘是n个数的
乘积,那么要是我们能把这个问题分解就好了。
在这之前,我们必须要知道一个知识,任意一个正整数a的位数
等于(int)log10(a) + 1;为什么呢?下面给大家推导一下:
  对于任意一个给定的正整数a,
  假设10^(x-1)<=a<10^x,那么显然a的位数为x位,
  又因为
  log10(10^(x-1))<=log10(a)<(log10(10^x))
  即x-1<=log10(a)<x
  则(int)log10(a)=x-1,
  即(int)log10(a)+1=x
  即a的位数是(int)log10(a)+1
我们知道了一个正整数a的位数等于(int)log10(a) + 1,
现在来求n的阶乘的位数:
假设A=n!=1*2*3*......*n,那么我们要求的就是
(int)log10(A)+1,而:
log10(A)
        =log10(1*2*3*......n)  (根据log10(a*b) = log10(a) + log10(b)有)
         =log10(1)+log10(2)+log10(3)+......+log10(n)
现在我们终于找到方法,问题解决了,我们将求n的阶乘的位
数分解成了求n个数对10取对数的和,并且对于其中任意一个数,
都在正常的数字范围之类。
总结一下:n的阶乘的位数等于
  (int)(log10(1)+log10(2)+log10(3)+......+log10(n)) + 1

 

 

1 #include
2 #include
3 using namespace std; 4 int main() 5 { 6 int n,t;cin >> t; 7 while(t--){ 8 cin >> n; 9 double ans=0;10 for(int i=1;i<=n;++i)11 ans+=log10(i);12 cout << int(ans)+1 << endl;13 }14 }

 

转载于:https://www.cnblogs.com/sasuke-/p/5159128.html

你可能感兴趣的文章
splay tree
查看>>
深入理解java虚拟机读书笔记1--java内存区域
查看>>
找到了一个鬼畜扫雷
查看>>
【转载】计算机程序的思维逻辑 (82) - 理解ThreadLocal
查看>>
UML几种图的绘制
查看>>
Django中文无法转换成latin-1编码的解决方案
查看>>
P1378 油滴扩展 dfs回溯法
查看>>
DropDownList 获取不了选择的值 这种错误
查看>>
上周热点回顾(8.12-8.18)
查看>>
HDU 1029: Ignatius and the Princess IV
查看>>
【MongoDB】CentOS上安装MongoDB
查看>>
HTML超链接使用
查看>>
java取得当前日期增加一天或多天
查看>>
php问题
查看>>
HttpWebRequest和WebClient的用法
查看>>
CMDB学习之七-实现采集错误捕捉,日志信息处理
查看>>
CSS display 属性
查看>>
vue+element-ui 实现分页
查看>>
python基本语法1.4--初识爬虫
查看>>
leetcode weekly contest137
查看>>